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Abstract. All Lie bialgebra structures on the Heisenberg–Weyl algebra [A−, A+] = M are
classified and explicitly quantized. The complete list of quantum Heisenberg–Weyl algebras so
obtained includes new multiparameter deformations, most of them being of the non-coboundary
type.

A Hopf algebra deformation of a universal enveloping algebraUg defines in a unique way
a Lie bialgebra structure(g, δ) on g [1]. The cocommutatorδ provides the first-order
terms in the deformation of the coproduct, and can be seen as the natural tool to classify
quantum algebras. Moreover, this well known statement suggests the relevance of the
inverse problem, i.e. to find a method to construct, given an arbitrary Lie bialgebra, a Hopf
algebra quantization of it.

This question has been addressed recently in [2], where a very general construction
of a deformed coassociative coproduct linked to a given Lie bialgebra(g, δ) has been
presented. Such Lie bialgebra quantization formalism, inspired by the paper [3] (see also
[4]), has been shown to be universal for the oscillator algebra: multiparametric coproducts
corresponding to all coboundary oscillator Lie bialgebra structures can be obtained in that
way (for the oscillator algebra non-coboundary structures do not exist [5]). To complete the
structure of quantum algebras, deformed commutation rules can be found by imposing the
homomorphism condition for the coproduct (counit and antipode can be also easily derived).

In this letter we show that all Heisenberg–Weyl Lie bialgebras can be completely
quantized by making use of this formalism. This result enhances the advantages of such an
approach in order to obtain a full chart of Hopf algebra deformations of physically relevant
algebras.

Firstly, we find the most general form of all families of Heisenberg–Weyl Lie bialgebras.
It is remarkable that, in contrast to the oscillator case, now there exists only one coboundary
bialgebra among them. Afterwards, it is shown how all these Lie bialgebras can be classified
and ‘exponentiated’ to get the quantum coproducts by means of the formalism introduced in
[2]. We also find all deformed commutation rules, thus obtaining a complete list of quantum
deformations of this algebra, whose properties are briefly commented. This exhaustive
description is fully complementary with respect to the quantum group results already known
either from a Poisson–Lie construction [6] or from anR-matrix approach [7].

Let us fix the notation. The Heisenberg–Weyl Lie algebrah3 is generated byA+, A−
andM with Lie brackets

[A−, A+] = M [M, · ] = 0. (1)
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A 3× 3 real matrix representationD of (1) is given by

D(A+) =
( 0 0 0

0 0 1
0 0 0

)
D(A−) =

( 0 1 0
0 0 0
0 0 0

)
D(M) =

( 0 0 1
0 0 0
0 0 0

)
. (2)

The expression for a generic element of the Heisenberg–Weyl groupH3 coming from this
representation is

D(T ) = exp{mD(M)} exp{a−D(A−)} exp{a+D(A+)} =
( 1 a− m+ a−a+

0 1 a+
0 0 1

)
(3)

and the group law for the coordinatesm, a− and a+ is obtained by means of matrix
multiplicationD(T ′′) = D(T ′) ·D(T ):

m′′ = m+m′ − a−a′+ a′′+ = a′+ + a+ a′′− = a′− + a−. (4)

Heisenberg–Weyl Lie bialgebras(h3, δ) will be defined by the cocommutatorδ : h3→
h3⊗ h3 such that

(i) δ is a 1-cocycle, i.e.

δ([X, Y ]) = [δ(X), 1⊗ Y + Y ⊗ 1]+ [1⊗X +X ⊗ 1, δ(Y )] ∀X, Y ∈ h3 (5)

(ii) the dual mapδ∗ : h∗3 ⊗ h∗3→ h∗3 is a Lie bracket onh∗3.
From (ii), we consider an arbitrary skewsymmetric cocommutator:

δ(A−) = a1A− ∧ A+ + a2A− ∧M + a3A+ ∧M
δ(A+) = b1A− ∧ A+ + b2A− ∧M + b3A+ ∧M
δ(M) = c1A− ∧ A+ + c2A− ∧M + c3A+ ∧M (6)

whereai, bi, ci (i = 1, 2, 3) are real parameters. If we impose on (6) the cocycle condition
(5) we obtain

c1 = 0 c2 = b1 c3 = −a1. (7)

Since the dualh∗3 with generators{m, a−, a+} must be a Lie algebra, the Jacobi identity on
the bracketδ∗ gives rise to two additional conditions:

a1(b3− a2)− 2b1a3 = 0 b1(a2− b3)− 2a1b2 = 0. (8)

Hence, the most general Heisenberg–Weyl bialgebra has commutation relations (1) and
cocommutators

δ(A−) = a1A− ∧ A+ + a2A− ∧M + a3A+ ∧M
δ(A+) = b1A− ∧ A+ + b2A− ∧M + b3A+ ∧M
δ(M) = b1A− ∧M − a1A+ ∧M (9)

with the six parametersai , bi verifying (8).
It is also known that the dual Lie bracketδ∗ gives the linear part of the (unique) Poisson–

Lie structure on the group linked toδ [8]. Therefore, starting from the classification of
Poisson–Lie Heisenberg groups given in [6] and taking into account the change of local
coordinates on the Heisenberg group

x1 = a− x2 = a+ x3 = m+ a− a+ (10)

it is straightforward to prove that the full Poisson–Lie bracket associated toδ reads

{a−, a+} = a1a− + b1a+
{a−, m} = a2a− + b2a+ + b1m− 1

2a1a
2
−

{a+, m} = a3a− + b3a+ − a1m+ 1
2b1a

2
+. (11)



Letter to the Editor L151

In other words, if (4) is read as a coproduct on Fun(H3), it is easy to check that the group
law turns out to be a Poisson algebra homomorphism with respect to (11).

Finally, let us find out for which values of the parameters we have coboundary Lie
bialgebras (see [9]). So, we investigate the most general skewsymmetric elementr of
h3⊗ h3 such that

δ(X) := [1⊗X +X ⊗ 1, r] X ∈ h3 (12)

defines a Lie bialgebra. This is equivalent to imposing the Schouten bracket [[r, r]] to be a
solution of the modified classical Yang–Baxter equation (YBE)

[X ⊗ 1⊗ 1+ 1⊗X ⊗ 1+ 1⊗ 1⊗X, [[r, r]] ] = 0 X ∈ h3. (13)

Explicitly, we consider three real-valued coefficientsξ, β+ andβ− and write

r = ξA+ ∧ A− + β+A+ ∧M + β−A− ∧M. (14)

The Schouten bracket of this element is given by

[[r, r]] = −ξ2M ∧ A+ ∧ A−. (15)

This bracket is found to fulfill automatically the modified classical YBE (13). Therefore,
(14) is always a classicalr-matrix. The cocommutator (12) derived from it reads

δ(A+) = −ξA+ ∧M δ(A−) = −ξA− ∧M δ(M) = 0. (16)

Thus, we conclude that there exists only one non-trivial coboundary Heisenberg–Weyl Lie
bialgebra which is characterized by

a1 = a3 = b1 = b2 = 0 a2 = b3 = −ξ. (17)

The caseξ = 0 gives rise to a solution of the classical YBE, but now the cocommutator
vanishes.

Let us go back to the four-parameter family of bialgebras given by (8) and (9). It is
easy to check that equations (8) have three disjoint types of solutions

Type I+: a1 6= 0, b2 = −a3 b
2
1/a

2
1, b3 = a2+ 2b1a3/a1 anda2, a3, b1 arbitrary.

Type I−: a1 = 0, b1 6= 0, a3 = 0, a2 = b3 andb2, b3 arbitrary.
Type II: a1 = 0, b1 = 0 anda2, a3, b2, b3 arbitrary.
So, we have three (multiparametric) families of Lie bialgebras. To quantize them, we

have to check that, within each family [2]:
(a) there exists some set{Hi} of commuting generators ofg such thatδ(Hi) = 0 (these

will be the primitive generators after quantization);
(b) for the remaining generatorsXj , their cocommutatorδ(Xj ) must only contain terms

of the formX ∧H (neitherXl ∧Xm norHn ∧Hp contributions are allowed).
Finally, we have to take into account the fact that two Lie bialgebra structures of a Lie

algebrag are equivalent if there exists an automorphism ofg that transforms one into the
other. As we shall see, some automorphisms of the Heisenberg algebra will help us to get
bialgebras fulfilling conditions (a) and (b).

Type I+. This is a family of Lie bialgebras which has, for general values of the parameters,
no primitive generatorδ(H) = 0. However, if we define

A′+ := A+ − b1

a1
A− +

(
b1 a3

a2
1

+ a2

a1

)
M a1 6= 0 (18)

it is immediate to check that, in this new basis, the type I+ bialgebras have the following
cocommutator:
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δ(A−) = −a1A
′
+ ∧ A− + a3A

′
+ ∧M

δ(A′+) = 0
δ(M) = −a1A

′
+ ∧M. (19)

The automorphism (18) has shown the parametersb1 anda2 to be superfluous.
The coproduct that quantizes the resultant biparametric family (19) can now be obtained.

First, we see that this family of bialgebras verifies conditions (a) and (b) withA′+ being
the primitive generator (from now on, we shall writeA+ instead ofA′+). Following [2] we
write the non-vanishing cocommutators in (19) in the matrix form

δ

(
A−
M

)
=
(−a1A+ a3A+

0 −a1A+

)
∧̇
(
A−
M

)
. (20)

In this way, the coproduct for non-primitive generators will be formally given by

1

(
A−
M

)
=
(

1 0
0 1

)
⊗̇
(
A−
M

)
+ σ

(
exp

{(
a1A+ −a3A+

0 a1A+

)}
⊗̇
(
A−
M

))
(21)

where σ is the exchange operator on the tensor product. By computing explicitly the
exponential, we find that

1(A+) = 1⊗ A+ + A+ ⊗ 1 1(M) = 1⊗M +M ⊗ ea1A+

1(A−) = 1⊗ A− + A− ⊗ ea1A+ − a3M ⊗ A+ ea1A+ . (22)

The next step is the search for deformed commutation rules compatible with (22). They
turn out to be

[A−, A+] = M [A−,M] = 1
2a1M

2 [A+,M] = 0. (23)

Finally, counit and antipode are deduced

ε(X) = 0 X ∈ {A−, A+,M} (24)

γ (A+) = −A+ γ (M) = −M e−a1A+

γ (A−) = −A− e−a1A+ − a3MA+ e−a1A+ (25)

and the Hopf algebraUa1,a3(h3) that quantizes the family of (non-coboundary) Heisenberg–
Weyl bialgebras (19) is obtained.

It is remarkable that in this quantum deformation the parametera3 is not involved in
the deformed commutation rules. Recall that (23) was firstly obtained in [7] starting from
a quantum Heisenberg group and by applying a duality method (coproduct (22) could not
be found).

On the other hand, a physically suggestive observation comes from the fact that the
generatorM is neither central nor primitive (recall the role that the non-primitive mass
generator of quantum extended Galilei algebra plays in one-dimensional magnon systems
[10]). The central elementC is now

C = M e−a1A+/2. (26)

This element labels the following differential realization ofUa1,a3(h3):

A+ = x A− = λ ea1x/2∂x M = λ ea1x/2 (27)

whereλ is the eigenvalue ofC. Note also that, by introducingC as a new generator instead
of M, relations (23) turn into

[A−, A+] = C ea1A+/2 [A−, C] = 0 [A+, C] = 0. (28)
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Finally note that, ifÃ, Ã+ and Ã− are the generators of the non-standard quantum
deformationUzsl(2,R) [11], the quantum Heisenberg algebraUa1,0(h3) can be obtained as
the contractionε→ 0 defined by

M = −εÃ, A+ = Ã+ A− = εÃ− a1 = 2z. (29)

As could be expected from the non-coboundary character ofUa1,0(h3), the universalR-
matrix of Uzsl(2,R) diverges under (29).

Type I−. After specializing the corresponding parameters we find a three-parameter
cocommutator also with no primitive generators. However, the definition ofA′− by means
of the automorphism

A′− := A− − b3

b1
M b1 6= 0 (30)

implies that this family of Lie bialgebras is given by

δ(A′−) = 0
δ(A+) = b1A

′
− ∧ A+ + b2A

′
− ∧M

δ(M) = b1A
′
− ∧M. (31)

In particular, the parameterb3 has been reabsorbed, and (31) can be quantized. Moreover,
these type I− structures are essentially the same as the type I+ (19), but reversing the role
of A− andA+. Once again, another Heisenberg algebra automorphism given by

A+ → A− A− → A+ M →−M (32)

would make both types of bialgebras explicitly equivalent. Therefore, we omit the explicit
quantization leading to the algebraUb1,b2(h3).

Type II. If a1 andb1 vanish, the cocommutator (9) reads

δ(A−) = a2A− ∧M + a3A+ ∧M
δ(A+) = b2A− ∧M + b3A+ ∧M
δ(M) = 0. (33)

In this case,M is the primitive generator and no extra manipulation is needed in order to
quantize this family of bialgebras. We write (33) in matrix form:

δ

(
A−
A+

)
=
(−a2M −a3M

−b2M −b3M

)
∧̇
(
A−
A+

)
. (34)

Hence, the corresponding coproduct is given by

1

(
A−
A+

)
=
(

1 0
0 1

)
⊗̇
(
A−
A+

)
+ σ

(
exp

{(
a2M a3M

b2M b3M

)}
⊗̇
(
A−
A+

))
. (35)

Although the four parameters describing this quantum algebra are arbitrary, in order to
derive the commutation rules compatible with (35) it will suffice to write

E := exp

{(
a2M a3M

b2M b3M

)}
=
(
E11(M) E12(M)

E21(M) E22(M)

)
. (36)

In this way, the explicit quantum coproduct will be

1(M) = 1⊗M +M ⊗ 1
1(A−) = 1⊗ A− + A− ⊗ E11(M)+ A+ ⊗ E12(M)

1(A+) = 1⊗ A+ + A+ ⊗ E22(M)+ A− ⊗ E21(M). (37)
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Now, by taking into account the following property,

E11(M)E22(M)− E12(M)E21(M) = e(a2+b3)M (38)

it is straightforward to prove that the four-parameter coproduct (37) is an algebra
homomorphism with respect to the deformed commutation rules

[A−, A+] = e(a2+b3)M − 1

a2+ b3
[A−,M] = 0 [A+,M] = 0. (39)

Due to the preservation ofM as central element, counit and antipode are easily deduced.
These operations complete the construction of the multiparametric quantum algebra
Ua2,a3,b2,b3(h3). These type II quantizations were studied in [4] with no reference to Lie
bialgebra structures.

The well known coboundary quantization is a particular subcase witha3 = b2 = 0 and
a2 = b3 = −ξ . A universalR-matrix (which is not a solution of the quantum YBE) for it
was obtained in [12], and a∗-product quantizing the corresponding Poisson–Lie Heisenberg
group was introduced in [9].

AB and FJH are partially supported by DGICYT (Project PB94-1115) from the Ministerio
de Educacíon y Ciencia de España.
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